Tras el escaso éxito de «¿Por qué usamos vapor en la industria?» y ya que el blog es mío y hago lo que me da la gana, voy a comentar sobre unos componentes que solemos encontrarnos en las instalaciones de vapor, con una importante misión: separar dos mundos.

Esta misión, poética en mi descripción, indispensable en la realidad, no es otra que separar del vapor aquellos elementos que pueden aparecer en la instalación tanto en la puesta en marcha (momento crítico) como durante su funcionamiento habitual, ya se trate de condensado (nombre habitual que recibe el agua resultante de la condensación del vapor) o los llamados incondensables (aire).

Por no entrar muy en detalle, resumiremos que el vapor, una vez ha transportado y cedido su energía, condensa en agua (redundante, sí, pero aclara), que puede generar numerosos problemas en la instalación, que está diseñada para transportar vapor, no agua, y por eso debe ser purgada. Además, sobre todo durante las puestas en marcha, pueden crearse bolsas de aire (incondensables), que son empujadas hacia puntos de la instalación donde pueden crear problemas, así que deben ser eliminadas (venteadas).

No purgar el condensado de una instalación puede comportar numerosos problemas de proceso como pérdidas energéticas, anegamiento de equipos, bajadas de rendimiento, etc; pero también problemas graves de seguridad como golpes de ariete por arrastre, con una energía que puede llegar a reventar tuberías, y arrancar instalaciones.

Físicamente, tanto  se trata de válvulas automáticas que deben abrir ante la presencia de aire o condensado, y cerrarse ante la llegada de vapor. Existen diferentes tecnologías de purgadores, cada una de ellas con una serie de ventajas y/o inconvenientes, sobre todo asociadas a diferentes condiciones y requerimientos. Haremos un pequeño resumen, y trataré de poner una foto de cada fabricante que conozco, para que nadie se me enfade, y «en el futuro» os hablaré de cada uno de ellos.

Condensate drain / automatic / mechanical / bimetallic
bimetálico
Condensate drain / automatic / thermostatic
termostático
Condensate drain / automatic / heat-recovery
termodinámico
13874-12252450
de boya
subib1_thumb
cubeta invertida
  • venturi, híbridas, etc…

Fuera de las instalaciones de vapor, nos podemos encontrar sistemas similares, con un funcionamiento muy parecido, pero que su función les hace denominarse de manera diferente:

– venteos. Válvulas automáticas que se abrirán ante la presencia de un gas en un circuito de líquidos. Mediante el conocimiento de los fluidos (gases y líquidos), y las condiciones de proceso e instalación, se diseñan dispositivos dimensionados específicamente para esta acción (p.e. en circuitos de aceite térmico, eliminar aire)

– drenadores. Exactamente igual que los elementos anteriores, pero para eliminar un líquido de un gas (p.e. en circuitos de aire comprimido, eliminar agua)

Y aquí va la fascinante segunda parte…

Vamos a ilustrar rápidamente porqué es necesario crear una fuerza de sellado en un sistema o sobre un material, si no queremos tener fugas. Y lo voy a mostrar como me lo explicaron a mí, pues creo que es el ejemplo más sencillo para entender estos conceptos, y es a través de un collarín hidráulico o neumático, en «U» (también llamado sello de labio, sello V, retén, etc…)

En primer lugar, existen unas medidas de ranura en el equipo (en adelante cajera), donde se introducirá el collarín que deberá generar estanqueidad en el sistema. Podemos ver en amarillo una sección representativa de un collarín en «U», habitualmente fabricado en elastómero.Cajera + collarin

A continuación, y para poder observar de manera clara la interferencia con la que se ha fabricado el collarín, os muestro esta imagen, donde los labios que deben generar el sellado, se fabrican con unas dimensiones superiores a la cajera que los contendrá, para que, como veremos más adelante, generen una presión, que se conoce como fuerza de sellado (al ser aplicada sobre una superficie). En realidad podéis imaginar que esta es un imagen ilustrativa, ya que automáticamente cuando la goma quede aprisionada en la cajera, se adaptará a la forma de esta (if you put water into a cup…).Cajera + collarín sin comprimir

Y efectivamente, cuando el collarín quede aprisionado en su cajera, quedará de esta forma.Cajera + collarín comprimido

Lo que originará automáticamente una fuerza de sellado sobre la superficie en contacto de los labios con el metal, que generará un gradiente de fuerzas, calculado por el fabricante del sello para que este funcione.Cajera + collarin + fuerza sellado

 

 

En realidad, lo que sucederá cuando el fluido ejerza también presión sobre el collarín, que el gradiente de fuerzas aumentará, incrementando así la fuerza de sellado (aquí algunos deberían entender porqué con presión muchos sistemas no fugan, y cuando esta desaparece, fuga, aunque más adelante veréis donde está concretamente el truco, por culpa del compression set). Cajera + collarin + fuerza sellad + fuerza fluidoLlegados a este punto ¡ya tenemos el primer ingrediente para el compression set! ¡Presión!

El segundo ingrediente ¡la temperatura! En realidad es opcional, como los elevalunas eléctricos cuando yo era pequeño, y en realidad lo más interesante es que si no existe, igualmente se producirá la deformación, pero si existe, provocará una aceleración del proceso.

Y el tercer ingrediente… ¡el tiempo! Ese que todo lo arregla, o todo lo jode, según se mire

Y es que el compresión set no es más que una modificación de la geometría original que sufren los elastómeros y algunos plásticos sometidos a una carga de compresión, con o sin temperatura, que se alarga en el tiempo de manera continua o cíclica.

Como podéis ver en la siguiente imagen, en realidad lo que le pasa a un sello dentro de su cajera, es que «se olvida» de su forma original debido a los procesos de envejecimiento citados en el primer artículo, que sumados a la presión, temperatura y tiempo, conforman el material con cualquier forma que tenga la ranura. Por eso sucede que con el tiempo, cuando un equipo está en marcha, y existe presión, el collarín crea una fuerza de sellado que evita las fugas, pero cuando esta fuerza desaparece, y el compression set ya ha hecho estragos, el líquido es capaz de colarse entre el metal y el collarín de manera que el sistema «suda aceite o el líquido que estemos intentando contener».

Cajera + collarin deformado

Y hasta aquí queridos niños la maravillosa y apasionante vida del compression set, o más largo para los que gusten de un mayor uso de saliva: deformación permanente por compresión

En castellano la definición más correcta que he encontrado es «deformación permanente por compresión», y se refiere al grado de deformación de un elastómero debido a una exposición prolongada a una carga de compresión.

Este asunto es de vital importancia en aplicaciones industriales de sellado de equipos, tanto estáticas como dinámicas, donde los materiales elastómeros son ampliamente utilizados.

Los materiales elastómeros

Debemos partir del conocimiento básico de los elastómeros, que pueden ser de origen natural o sintético, y cuyo proceso de fabricación puede concluir con la vulcanización, que realiza un cohesión de sus moléculas, dotándo al material de unas propiedades muy interesantes.

En general los elastómeros tienen un inconveniente, y es que conforme se fabrican, comienza un proceso de envejecimiento por oxidación que hace que pierda resistencia y elasticidad, este puede ser en días o en años hasta que pierda sus propiedades, pero existe, si no, me quedaría sin artículo ;). Incluso existiendo normas y técnicas sobre su fabricación (con aditivos específicos para retardar este efecto), conservación (almacenamiento controlado en temperatura, humedad, etc), y uso (condiciones ambientales de funcionamiento), es conocido que un elastómero envejece y pierde propiedades.

Todos hemos observado en nuestra propia casa con diferentes elementos como la suela de los zapatos que se endurece, las gomas de pollo que sujetan nuestros cables o cromos que se rompen, incluso los neumáticos de nuestros coches o motos que pierden adherencia, y es que, con el pasar de los años, lo que inicialmente tenía una elasticidad envidiable, y un aspecto «gomoso» muy apetecible :), se torna liso y brillante (por una capa externa endurecida), y con una elasticidad y otras propiedades desaparecidas, incluso llegando al agrietamiento o rotura del material ante una deformación mínima.

Ahora vamos a llevar todo esto al campo de la industria, y en concreto a las aplicaciones de estanqueidad o sellado, que es donde queremos llegar, ya que allí el compression set, o deformación permanente por compresión, cobra una importancia notable, produciendo numerosos problemas en la industria, aunque algunos no quieran reconocerlo 😉

Fuente:Wikipedia

No quiero hacer una lista de materiales elastoméricos, pues es vastamente conocido el uso de diferentes elastómeros para el sellado desde muchas décadas atrás hasta hoy; pero me estoy dando cuenta que la voy a tener que hacer para satisfacer vuestras ansias de conocimiento, pues ya oigo a la gente agolpándose bajo mi ventana para reivindicar un listado mínimo. En este hay una mezcla entre términos técnicos, marcas y «palabros de uso común»; vaya por delante que no está completa, pues sería tarea ardua y quizás mejor que consultéis la ISO 1689:

  • NBR. Nitrilo butadieno, BR, buna-N, Perbunan®, goma-lona (combinación NBR con textil)…
  • EP. Etileno propileno con variantes como EPDM, EP962…
  • FKM. Fluoroelastómeros, FPM, Vitón®…
  • VQM. Silicona, SI, comenzando con las famosas «goma-lona», hasta llegar al más avanzado compuesto en materia química como son los perfluoroelastómeros, pasando por los nitrilos butadienos (NBR o buna), buna
  • PU. Poliuretanos, PUR, TPU, TPE, AU, EU…
  • FPKM. Perfluoroelastómeros, FFKM, Kalrez®…
  • CR. Chloroprene, Neopreno®…

Qué mejor ilustración para este artículo que la vista esquematizada de un elastómero en reposo (A), y el mismo sometido a tensión (B).

Vaya rollazo os he estado explicando hasta ahora, y aún no hemos empezado con el compression set. Pero no se vayan todavía ¡aun hay más!

La memoria y la estanqueidad

Por si alguien lo dudaba, existe una necesidad básica para conseguir estanqueidad en un sistema, y es la memoria.

Si tienes un poro en un globo que acabas de llenar de agua, instintivamente pones el dedo para que deje de salir, y juegas a mojar a los de al lado. Y así será hasta que olvides porqué tenías el dedo allí, y vuelva a salir agua. Memoria.

Si ponéis un parche en una cámara o neumático se quedará allí hasta que olvide cual era su función y vuelva a perder aire (aunque puedan pasar años). Memoria.

Si ponéis una junta planta en cualquier sitio, y apretáis los tornillos que la aprisionan, estáis dotando al sistema de una carga, que debería permanecer ahí «para siempre» y así tener estanqueidad. Memoria.

Os podría dar cientos de ejemplos más de como el hombre dota a los materiales o a un sistema de memoria para evitar fugas (esta frase con hombre y memoria, es caldo de cultivo para mujeres 🙂 )

¿Y qué pasa si el material o sistema pierde u olvida la memoria? ¡pues averías!

¿Por qué es importante este punto? Aunque breve (con mi mal llevaba brevedad), porque el compressión set, es un proceso por el cual un elastómero pierde la memoria, y deja de realizar su función de estanqueidad, y… ¡avería!

¿Nos vas a explicar de una p*** qué es el compression set? Si. En el próximo artículo

 

Bueno, es fácil por la gramática averiguar cual es el objetivo de un intercambiador de calor, pero para que pueda hacer al menos un artículo interesante (o incluso dos), hablaremos de cómo hacen ese intercambio de calor, cómo son, y para qué se usan.

Un intercambiador de calor es un equipo que nos permite provocar y controlar un proceso de transferencia de temperatura entre 2 o más cuerpos.

La teoría de estos aparatos nos remite directamente a diferentes principios de la termodinámica, y de manera más práctica a conceptos de transferencia de calor, que juraría que fue la única clase en la que no me dormí en ingeniería térmica, y quizás por eso siempre vacilo con estos conocimientos (que es realidad son los únicos de esta materia que conozco, y aquello de «la energía no se creo ni se destruye, y bla bla bla).

La realidad es que dos cuerpos a diferente temperatura evolucionarán hacia el equilibrio entre estas, siempre de manera que hay una transferencia de energía térmica del cuerpo con mayor temperatura al de menor, y esto se consigue mediante:

– radiación. La que emite un cuerpo por su temperatura en forma de ondas. Por ejemplo una bombilla

– convección. Entre cuerpos separados por un fluido que transporta la energía entre ambos. Por ejemplo las corrientes de aire en la Tierra.

– conducción. Entre dos cuerpos en contacto directo. Por ejemplo una sarten sobre una resistencia eléctrica.

En general en la industria hay muchísimos equipos que actúan bajo estos principios (a veces combinados con otros), y muchas veces sus nombres atienden sólo hacía en qué sentido observamos la transferencia, pues como hemos dicho, el cuerpo caliente siempre cederá energía al frío: radiadores, calderas, condensadoras, intercambiadores, enfriadoras, refrigeradoras, calentadores, aireadores, calefactores, intercooler, etc.

Para acabar decir que tenemos dos intercambiadores de calor en nuestro día a día, que pasan desapercibidos, pero que a raíz de este maravilloso artículo, que cambiará vuestra percepción del entorno, pasarán a formar parte de una nueva dimensión donde explicaréis a vuestras allegados vuestros conocimientos en la materia mientras ellos se adentran en los dominos de Morfeo:

– radiador de vuestro coche o moto. Los que se hayan tenido algún accidente lo saben bien, pero delante del vehículo, tras la parrilla embellecedora de cualquier vehículo, se coloca un radiador por donde se hace circular el líquido refrigerante del motor, donde unos tubos aleateados realizan un intercambio de calor con el aire cuando se está en movimiento, o con el aire producido por el ventilador cuando se está parado.

– nuestra nariz. Para aquellos que aún opinen que estamos mal diseñados, saber que nuestra nariz cumple un objetivo doble. Al inhalar precalentamos el aire que tiene que llegar a nuestros pulmones, y cuando exhalamos lo refrigeramos. Sólo tenéis que colocar vuestra mano delante de la boca y nariz y exhalar aire para comprobar una buena diferencia de temperatura. Después de hacerlo 10 veces, parar, no os vayáis a marear. Y si tenéis alguien al lado mientras leéis esto, por favor tras hacerlo las primeras veces, mirar de reojo por su rostro gira hacía la preocupación o directamente dormita 😉

En mi caso, soy capaz de congelar alimentos con la nariz. Sí, estoy bien dotado. Y al finalizar, os hiero.

Hace bastante tiempo escribí que en muchas situaciones de mi vida no me dedico a buscar culpables, sino que dedico mis esfuerzos a encontrar soluciones; para qué perder el tiempo, si la recompensa por encontrar al culpable es 0, y la solución vale 1 (estoy en modo binario). En realidad, todos necesitamos que una parte de nuestra vida se ejecute en modo diagnóstico (buscando culpable y solución), porque si no seríamos incapaces de relacionarnos con nuestro entorno y avanzar, pues cada día es un cúmulo de circunstancias, que nos permiten aprender mediante observación, y posteriormente, si queremos (actitudes), y/o podemos (aptitudes), buscaremos soluciones (toma filosofía barata).

Recuerdo que en ese mismo artículo aclaré que en la técnica, justamente aplico todo lo contrario, ya que en ese caso si que hay recompensa por encontrar al culpable, la de evitar un error o fallo.

Sobre todo en mecánica, no olvidemos que estoy venía siendo un blog de mecánica, las pistas que nos ofrecen los fallos son muy importantes, y sirven en muchísimos casos para determinar las causas, incluso su orden y su magnitud, y de esta manera, bien corregirlas, bien establecer herramientas de predicción que nos permitan acotarlos. En realidad, con este artículo no invento nada, y por ejemplo se habla de «eliminación del problema» (troubleshooting), o del «análisis de la causa raíz» (root cause analysis), como herramientas que nos permiten encontrar las causas del fallo y solucionar, pero como había empezado a escribir este artículo antes de hablar de estos sistemas, ahora ya lo acabo.

Ahora voy a hacer gala de mi palabra 301, y 302. Este texto, escrito como mecánico venido a más, aunque circunscrito a esta temática, permite extrapolar el sistema a otras muchas disciplinas que no quiero citar para que no me lluevan hostias, incluso a las personas, y me vino a la mente porque:

  1. Tengo espacio de sobra en esta inmensa esfera con pelo que tengo por cabeza
  2. En mi día a día vivo de analizar el fallo, lo que me permite ayudar a otras personas, animales o cosas

Aunque muchas veces, al menos en mi trabajo, no requiere más que unos sencillos pasos que os pasaré a describir:

  1. conocimiento del sistema. El primer punto es básico, por eso es el primero;) , pues lo requerimos para poder entender cómo debe funcionar el sistema. Y aunque la práctica muchas veces lo es todo, aquí la teoría es muy importante, pues nos permite visualizar los tipos de esfuerzo a los que están sometidos las piezas, a los desgastes relativos que pueden producirse, a los propios materiales de los componentes, etc.
  2. búsqueda de pistas mediante observación. Como siempre, sin tiempo no hacemos nada, y es que en función de la experiencia ante la situación, deberemos emplear más o menos tiempo buscando pistas, marcas, señales, cualquier información que nos acerque a la causa o causas del fallo.
  3. relación causa/efecto. Los dos puntos anteriores nos permiten encontrar los efectos, que debemos relacionar con sus causas, y como apuntaba antes, con su magnitud. Añado aquí el término «magnitud», pues como suelo explicar, conviene relativizar las cosas, pues no es lo mismo un tornillo que se ha roto al segundo día de funcionamiento, que uno que lo hace tras 20 años de servicio. Aunque las causas y los efectos puedan ser las mismas.
  4. solución. Esta es la parte más importante del proceso, y aquí intervienen innumerables cualidades del observador, pero no podemos decir que cerramos el círculo si no somos capaces de corregir o minimizar los efectos de las causas (creo que empiezo a abusar de estas palabras…)

Seguro que muchos de vosotros, que en vuestro día a día tenéis, o necesitáis de este procedimiento para subsistir, tenéis muchas variantes de este sistema que me acabo de inventar mientras hago la digestión, pero para eso están los comentarios del blog ¡y gratis!

Rotura del pantano de Puentes (Lorca)

¿Qué es el pH? ¿para qué sirve? ¿para qué necesita un mecánico el pH? Todos nos hemos hecho alguna vez estas preguntas antes de irnos a dormir, pues bien, por fin tendrás respuestas.

El pH es una escala de medida simplificada, que indica la acidez o alcalinidad de una solución. En sí, pH significia potencial de hidrógeno, ya que la cantidad de estos iones es quien determina la acidez o alcalinidad. Debemos a Dinamarca las buenísimas galletas de lata azul, la cerveza Carlsberg, y a uno de sus ciudadanos, Søren Peter Lauritz Sørensen, el descubrimiento de este método de medición.

Como cualquier escala de medición, nos sirve para comparar con unas bases establecidas científicamente, y que nos aportan datos sobre la realidad que tenemos presente (lo que estamos midiendo). El ejemplo más básico es cuando medimos el pH de una piscina, utilizamos unos papelitos con unas substancias químicas impregnadas para conocer el pH del agua y actuar en consecuencia.

Fuente: Wikimedia commons
Fuente: Wikimedia commons

Lo mínimo que debemos saber sobre el pH es:

  • el pH igual a 7 es neutro, medido sobre agua a 25ºC.
  • valores por encima de 7 indican alcalinidad.
  • valores por debajo de 7 indican acidez.

Igual que cuando medimos una longitud, la medida por sí sola no nos dice nada, su estudio y comparación sí que nos puede avisar de algo. Por ejemplo, si medimos la cabeza de alguien, y tiene un perímetro de 25cm, y es un barón mayor de 25 años, seguramente nos parecerá raro, y lo es, a menos que haya vivido cerca de una zona de jíbaros y esté muerto. Pues con el pH nos pasa lo mismo, si medimos el pH de nuestra piscina, nos sale pH1, y aún no se ha derretido, yo no me bañaría…

Algunos valores de pH:

  • pH 1,0. Ácido clorhídrico
  • pH 2,3. Zumo de limón
  • pH 2,4. Coca-Cola
  • pH 2,9. Vinagre
  • pH 3,5. Vino
  • pH 4,0. Cerveza
  • pH 4,1. Zumo de tomate
  • pH 5,0. Café, pan.
  • pH 5,6. Lluvia ácida
  • pH 6,0. Orina (lluvia dorada)
  • pH 6,5. Agua de lluvia
  • pH 6,6. Leche
  • pH 7,0. Agua destilada
  • pH 7,4. Sangre, sudor
  • pH 8,0. Agua de mar
  • pH 8,4. Levadura
  • pH 9,0. Bicarbonato de soda
  • pH 9,2. Disolución de bórax
  • pH 9,9. Pasta de dientes
  • pH 10,5. Leche de magnesia
  • pH 11,0. Agua de cal
  • pH 11,9. Amoniaco doméstico
  • pH 13,o. Lejía
  • pH 14,0. Hidróxido de sodio

Y si queréis ver pH de alimentos, por aquellos de los ardores…

Las propiedades de los materiales, en especial algunas de ellas, se ven claramente afectadas por efecto de la temperatura.

Esta temperatura no procede únicamente del entorno ambiental o climático, puede provenir de algún proceso natural o artificial: un fuego, una reacción química, un extintor rociado sobre un cuerpo, la fricción producida durante un movimiento, un golpe, y muchísimos sitios más, pero muchos muchos…y es que un calentón lo puede tener cualquiera 😉 Y un enfriamiento también 😦

Bueno, quiero ir a parar, a que el universo de los materiales, a nivel microscópico, está en constante movimiento (parezco el Punset). Los materiales, pueden tener comportamientos diferentes, o muy diferentes, en función de la temperatura a la que están. Y eso afecta a nuestras vidas, y mucho.

Si quisiera lleva esto a la ciencia más pura, podríamos llegar a los conocidos como diagramas de fase, que «no son más» que unos gráficos, obtenidos a través de experiencias, y de tíos empollones que no tenían nada mejor que hacer, que representan las fronteras entre diferentes estados de la materia (líquido, sólido y grasioso gaseoso), siempre en función de la temperatura (un eje), y/o volumen, porcentaje de un elemento, presión, etc (otro eje, o dos más).

En ingeniería química, un diagrama de fase típico es el del agua:

Fuente: Wikipedia

Y en ingeniería mecánica, el más típico es el del acero (hierro-carbono):

Fuente: Wikipedia

Pero no hace falta entrar tan profundo, para saber que debemos tener en cuenta los comportamientos de un material a diferentes temperaturas. Y para ello, tres ejemplos:

  • Cuando el ejército nazi, debido «a los retrasos típicos de la guerra», se encontró en campo soviético durante el frío invierno, no habían tenido en cuenta que todo su armamento metálico, iba a sufrir las consecuencias del frío. Debemos pensar que, a -40ºC, los aceros pueden contraer entre 1-4%, en función de la aleación. En otras palabras, pensar en un tubito por donde sale una bala de cañón, que debería hacer 100mm, que se ha encogido 2 ó 3mm… ¡¡¡¡ppppuuuummmm!!!
  • El PTFE, en estado 100% sólido, puede aguantar hasta los 270ºC, sin perder sus propiedas, y en cortos periodos de tiempo, hasta los 315ºC ¿por qué no más alla? Resulta que a partir de 325ºC, el PTFE empieza a carbonizarse, y a emitir unos vapores que son bastante tóxicos ¡¡¡ojo!!!
  • en los aceros, existen una fase de transición, donde el material cambia su capacidad de deformarse, o sea, pasa de dúctil a frágil. Resulta que unos amiguetes en canoa que recuperaron partes del casco del malogrado Titanic, realizaron los ensayos para determinar la temperatura de esta transición en el acero utilizado, determinando que estaba a -15ºC. Así que, omitiendo el detalle sin importancia del choque contra el iceberg, el empleo de ese material, la temperatura del agua por donde andaban, además de otros detalles estructurales como las uniones entre planchas, provocó la ruptura del casco, y el hundimiento del barco.

La elección de los materiales en ingeniería es algo tan elemental, que debería estar prohibido equivocarse, al final, y podéis verlo en los tres casos, se está jugando con las vidas de personas…

Artículos anteriores: Tratamientos del agua 1Tratamientos del agua 2 – CloraciónTratamientos del agua 3 – OzonoTratamientos del agua 4 – Radiación UVTratamientos del agua 5 – Filtración

Las incrustaciones calcáreas están directamente relacionadas con la dureza del agua, y la dureza del agua está relacionada, sobre todo, con las sales de calcio y de magnesio que encontramos en ella (entre otras).

Cuando hablamos de dureza del agua, como podemos ampliar en la Wikipedia, nos referimos a la cantidad de sales presentes en cierta cantidad de agua (sales metálicas), sobre todo al bicarbonato cálcico, y al bicarbonato magnésico.

Estas dos sales, difícilmente se mantienen estables en el agua, ya que necesitan gas carbónico para evitarlo, y a no ser que nuestro ayuntamiento haya contratado un suministro de agua con gas para la ciudad, lo que hace el agua es dejar estar sales por cualquier lado, y crear las incrustaciones calcáreas, causantes de un buen número de problemas que solemos sufrir a diario, como roturas de tuberías, problemas de presión en la red, y también causa del buen estado de uno de nuestros deportes nacionales, levantar aceras.

Resumiendo, esta inestabilidad de las sales que transporta el agua por nuestras tuberías (disolución), hace que se depositen fácilmente en superficies rugosas (como el fibrocemento que tenemos en gran parte de nuestras redes, primera foto), aunque sean microscópicamente (como en plásticos, segunda foto), dando lugar en el tiempo, a una especie de capas depositadas que acaban por obstruir totalmente cualquier espacio. Os muestro varios fotos de tuberías que tuve en mis manos en un seminario ¡alucinante!

Las incrustaciones calcáreas son a las conducciones de agua, lo que el colesterol a nuestro organismo. (esta frase no pinta nada aquí, pero se me ha ocurrido).

Existen varios tipos de durezas, la total, la temporal y la permanente, y todas se miden con diferentes tipos de unidades (según el país), que se basan todas en la cantidad de carbonato cálcico presente en una cantidad de agua. Existen diferentes unidades como los grados franceses, americanos, alemanes… ¡parece un chiste! Aunque para convertirlos entre ellos existen tablas, basta con saber que cuanto mayor sea el número, más incrustante será el agua.

Sobre los tratamientos posibles para las incrustaciones, tenemos diferentes maneras de «atacar» el problema, en función de las necesidades:

  1. Mediante la dosificación de inhibidores químicos. Como podéis imaginar, suelen deben suelen deben ser de calidad alimentaria, y su función no es eliminar el calcio (cal) del agua, sino evitar que se enganche en las paredes.
  2. Mediante equipos físicos. Seguro que alguien recuerda los famosos imanes de estos programas de inventos para el hogar en la TV a las tantas de la madrugada, que evitaban las incrustaciones de cal. Pues resulta que se investigó y… ¡¡¡era cierto!!! Pero sólo en algunos casos. Pero eso dio pie a una serie de aparatos que mediante corrientes y electrólisis, evitan las incrustaciones.
  3. Mediante descalcificación. Esta es la única que realmente elimina el calcio del agua, bueno, realmente la «aparca». Se hace pasar el agua por una resina saturada de sal (sodio), que retiene las partículas de calcio y magnesio (responsables de las incrustaciones) ¡¡¡y la resina hay que regenerarla de vez en cuando!!!

…que se lo cuenten a mi amigo ídolo Homer Simpson

Iba a hacer un breve repaso sobre el tema de roscas antes de abordar la tontería el tema del que os quería hablar, pero visitando la definición de roscado en la Wikipedia, creo que es perder el tiempo, y no estamos para muchos despilfarros…

¡Eso sí! Haciendo un breve vistazo sobre la información de la Wikipedia, no se dedican más de 20 palabras a explicar para qué se usan las roscas, y es que cuando algo se convierte en habitual, casi natural, como el hecho de usar un tornillo o una tuerca, las explicaciones sobran ¿quién no ha tenido un maletín Multihobby o cualquier otra copia similar para niños pobres con tornillos, tuercas y llaves para apretar? Hoy en día, tienen a Bob el Manitas

Así que he pensado que aunque sobre unir elementos, que es el mayor campo de aplicación de las roscas, no hay que explicar muchas cosas,  y tras haber visto descubierto al mundo el uso y posibilidades del antigiro, hoy os voy a comentar una cosa muy básica, pero con la que se realizan muchísimas cosas en mecánica: el avance del paso de rosca.

El principio básico por el que se usan roscas es porque mecánicamente se consigue un movimiento sobre el eje del tornillo o tuerca hacia adelante o atrás ¡¡¡el archiconocido tornillo de Arquímedes!!! Con el que conseguimos desplazar materia hacia adelante.

Si ahora a esto le buscamos más funciones, pues tenemos una que es la que os quería comentar, y es que puede ser un instrumento de regulación.

Sí, una rosca, nos permite en mecánica desplazar cualquier elemento sobre un eje espacial x-y-z. Y os voy a poner como ejemplo, un desplazamiento muy común en industria, que se utiliza para regular la posición del motor respecto a cualquier elemento arrastrado. Cada avance del paso de la rosca, en este caso x o y, provocará un desplazamiento igual sobre la pata del motor (para que lo sepáis esto se hace habitualmente para regular la posición entre el accionamiento o motor, y el elemento arrastrado, ya que las desalineaciones, provocan malfuncionamiento. Mirar el ejemplo de abajo, de como recolocaríamos un eje de una máquina (eje 2), respecto al eje 1.

¡¡¡Vaya inventazo!!! Y que manera de sacar un artículo de la nada…

Además, esto se puede convertir en un movimiento de precisión, y se le puede incorporar una escala graduada o nonio, que vendría a ser la clase alta de las roscas (la burguesía). Cuando estas roscas estan en una bancada de una bomba, para mover en dos direcciones el motor para alinear, y los tornillos están oxidados, y con 15 capas de pintura encima, entonces se le llama: ¡¡¡Manoloooo!!! Apreta un poco más el tornillo y traeteló paquiiiíííí… Pero en el fondo todas descienden de la misma rosca…

Por ejemplo, en el artículo del proyector de perfiles, explicaba que moviendo «las ruedas indicadas en naranja» (tope técnico), conseguíamos el desplazamiento…¡pues bien! Ahora ya sabéis como se consigue esto…

Artículos anteriores: Tratamientos del agua 1Tratamientos del agua 2 – CloraciónTratamientos del agua 3 – OzonoTratamientos del agua 4 – Radiación UV

Fuente: Wikipedia
Fuente: Wikipedia

La filtración quizás sea el tratamiento de agua más fácil de entender sin necesidad de explicar muchas cosas. Se trata de separar las partículas sólidas del agua, normalmente atrapándolas, haciendo pasar el agua por un tamiz llamado filtro o membrana.

Depende de la literatura (es una manera culta de referirse a un libro), se clasifica la filtración por el tamaño de filtro, que da su nombre sistema, en función del tamaño de partículas que son capaces de atrapar:

  1. microfiltración. Extrae partículas de radio entre 0,1 a 1,5 micras. Es el tratamiento indicado para limpiar bacterias y partículas sólidas en suspensión de ese tamaño.
  2. ultrafiltración. Extrae partículas de radio entre 0,005 a 0,1 micras. Es el tratamiento indicado para eliminar las sales y sólidos de estos tamaños.
  3. nanofiltración. Extrae partículas de radio entre 0,0001 a 0,005 micras. Es el tratamiento indicado para eliminar virus y tóxicos como herbicidas o pesticidas.
  4. ósmosis Inversa. Extrae partículas de radio hasta 0,0001 micras. Es el tratamiento más potente, elimina por completo todo lo citado en los tratamientos anteriores, además de todas las sales presentes.

Los fenómenos por los cuales suelen actuar la mayoría de filtros se pueden reducir a estos:

  • tamizado mecánico. Se trata de hacer pasar al agua por intersticios (espacios entre elementos), cada vez más pequeños, y así la suciedad, va quedando atascada «por tamaño». Aquí encontramos todos los filtros de arena, silex, antracita, grava, piedras, etc. En pocas palabras, superposiciones de capas de materiales más grandes o mas pequeños, que evitan que partículas más grandes de un tamaño pasen a través de ellas. Los inconvenientes es que se pueden llegar a obstruir, y necesitan limpiezas, aunque algunos lo hacen automáticamente. También encontramos los filtros de hilo bobinado y de malla.
  • adsorción.  Cuando una sustancia ejerce atracción sobre otras partículas, de manera que las segundas quedan retenidas en la superficie de la primera. Aquí encontramos los filtros de carbón activo, que es una manera de multiplicar «por mucho», la superficie del carbón, con lo que tenemos un filtro capaz de retener en esa gran superficie gran cantidad de elementos tóxicos como pesticidas, plaguicidas, y también materia orgánica, algún tipo de cloro…

Pues nada, nos queda un artículo por ver que es el de la ósmosis inversa, que merece capítulo aparte, y con eso habremos acabado.